Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 25, 2026
-
We introduce pixelSplat, a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images. Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time. To overcome local minima inherent to sparse and locally supported representations, we predict a dense probability distribution over 3D and sample Gaussian means from that probability distribution. We make this sampling operation differentiable via a reparameterization trick, allowing us to back-propagate gradients through the Gaussian splatting representation. We benchmark our method on wide-baseline novel view synthesis on the real-world RealEstate10k and ACID datasets, where we outperform state-of-the-art light field transformers and accelerate rendering by 2.5 orders of magnitude while reconstructing an interpretable and editable 3D radiance field.more » « less
-
We introduce pixelSplat, a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images. Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time. To overcome local minima inherent to sparse and locally supported representations, we predict a dense probability distribution over 3D and sample Gaussian means from that probability distribution. We make this sampling operation differentiable via a reparameterization trick, allowing us to back-propagate gradients through the Gaussian splatting representation. We benchmark our method on wide-baseline novel view synthesis on the real-world RealEstate10k and ACID datasets, where we outperform state-of-the-art light field transformers and accelerate rendering by 2.5 orders of magnitude while reconstructing an interpretable and editable 3D radiance field.more » « less
-
This paper presents the Brown Pedestrian Odometry Dataset (BPOD) for benchmarking visual odometry algo- rithms on data from head-mounted sensors. This dataset was captured with stereo and RGB streams from RealSense cameras with rolling and global shutters in 12 diverse in- door and outdoor locations on Brown University’s cam- pus. Its associated ground-truth trajectories were gener- ated from third-person videos that documented the recorded pedestrians’ positions relative to stick-on markers placed along their paths. We evaluate the performance of canoni- cal approaches representative of direct, feature-based, and learning-based visual odometry methods on BPOD. Our finding is that current methods which are successful on other benchmarks fail on BPOD. The failure modes cor- respond in part to rapid pedestrian rotation, erratic body movements, etc. We hope this dataset will play a significant role in the identification of these failure modes and in the design, development, and evaluation of pedestrian odome- try algorithms.more » « less
An official website of the United States government

Full Text Available